Ge-on-GaAs film resistance thermometers, cryogenic temperature sensors

Several versions of Ge-on-GaAs film resistance thermometers with different operating characteristics are manufactured by MicroSensor Company. They are intended for operation in different temperature ranges and identified, and differentiated by the labels TTR-x.

  •  TTR-D operating range is from 0.03 to 300 K; 
  •  TTR-G and TTR-L operating range is from 0.3 to 400 K; 
  •  TTR-M operating range is from 1.0 to 400 K; 
  •  TTR-2 operating range is from 70 to 450 K; 
  •  TTR-3 operating range is from 200 to 500 K.
At present three versions of thermometer packages are offered. They are:
  • Cylindrical canister package (CP version) with dimensions: 3.0 mm in diameter and 5.0 mm long. 
  • Micro-package (MP version) with dimensions: 1.2 mm in diameter and 1.0 mm thick.
  • The micro-package with plate (MPP version). Dimensions of plate: 2 mm square by 0.15 mm thick.

The micro-thermometers (1.2 mm in diameter and 1.0 mm thick) can be used when temperature measurement with high spatial resolution and small response time is required. They may also be incorporated in other packages.

Some recommendations for best choice of thermometer and package version for specific application.


  • TTR-G and TTR-M versions of thermometers in CP package are recommended for applications in high magnetic field and under gamma radiation. These versions of thermometers are best choice for application in superconducting magnet systems.
  • TTR-D version is recommended for precise measurements in the 0.03 to 4 K range and unrecommended for use in magnetic field at ultralow temperatures.
  • The thermometers in micro-packages (MP and MPP versions) are recommended for use when temperature measurement with high spatial resolution and small response time is required.

Typical temperature dependences of resistance and sensitivity for different versions of thermometers

Overall and detailed views of the thermometer package design

CP version of package (cylindrical canister package):- 3.0 mm in diameter and 5.0 mm long

MP version  of package:- 1.2 mm in diameter and 1.0 mm thick

The temperature sensing element is contained within an alumina tube which has copper end caps. The element is bonded to the one of end cap and electrical contact made to both caps through 30-50 µm gold wires. Finally, copper wires are soldered to the end caps to facilitate four-terminal measurements.

MPP version of the packaged thermometer with plate:- 2 mm square by 0.15 mm thick

The micro-packaged thermometer (1.2 mm in diameter and 1.0 mm thick) can also be bonded to a sapphire plate (2 mm square by 0.15 mm thick) for ease of mounting on a surface. Electrical contacts made of copper wires, which are soldered to the plate to provide measurements.

L I T E R A T U R E

1.   V.F. Mitin, V.V. Kholevchuk, B.P. Kolodych. Ge-on-GaAs film resistance thermometers: low-temperature conduction and magnetoresistanceCryogenics Vol. 51, pp. 68-73 (2011).

2.  Є.Ф. Венгер, А.С. Зенкін, Н.Л. Козелло, Б.П. Колодич, Н.М. Криницька, О.С. Кулик, В.Ф. Мітін, І.Ю. Неміш, В.В. Холевчук. Мініатюрні кремнієві діодні та германієві резистивні термометри для вимірювання низьких температурФізика і хімія твердого тіла, 2, 499-505 (2010).

3.   V.F.Mitin, N.S. Boltovets, V.V. Kholevchuk, V.V. Basanets, E.V. Mitin, P.C. McDonald, F. Pavese. Dual function sensors for concurrent measurements of temperature and magnetic fields in cryogenic applicationsCryogenics, Vol. 48, pp. 413-416 (2008).

4.  Download the article В.Ф. Митин, В.В. Холевчук, И.Ю. Немиш, Е.В. Митин, Н.С. Болтовец. Термометры сопротивления и многофункциональные сенсоры для одновременного измерения температуры и магнитного поляНовые промышленные технологии, № 5, с. 29-33 (2008).

5.   V.F. Mitin, P.C. McDonald, F. Pavese, N.S. Boltovets, V.V. Kholevchuk, I.Yu. Nemish, V.V. Basanets, V.K. Dugaev, P.V. Sorokin, R.V. Konakova, E.F. Venger, E.V. Mitin, Ge-on-GaAs film resistance thermometers for cryogenic applications. Cryogenics, Vol. 47, pp. 474-482 (2007).

6.  Download the article  N.S. Boltovets, V.K. Dugaev, V.V. Kholevchuk, P.C. McDonald, V.F. Mitin, I.Yu. Nemish, F. Pavese, P.V. Sorokin, E.A. Soloviev and E.F. Venger, New generation of resistance thermometers based on Ge films on GaAs substrates, Temperature: Its Measurement and Control in Science and Industry, Vol.7, edited by Dean C. Ripple, AIP Conference Proceedings 684, pp.399-404 (2003). Eighth Symposium on Temperature: Its Measurement and Control in Science and Industry, Chicago, USA, October 21-24, 2002.

7.   N.S. Boltovets, V.V. Kholevchuk, R.V. Konakova, V.F. Mitin and E.F. Venger, Ge-film resistance and Si-based diode temperature microsensors for cryogenic applications. Sensors and Actuators A Vol. 92, pp. 191-196 (2001).

8.  Download the article  V.F. Mitin, P.C. McDonald, F. Pavese, N.S. Boltovets, V.V. Kholevchuk, I.Yu. Nemish, V.V. Basanets, V.K. Dugaev, P.V. Sorokin, E.F. Venger, E.V. Mitin. New temperature and magnetic field sensors for cryogenic applications developed under a European Project. ICEC 20, 11-14 May 2004, Beijing, China, pp.971-974. (Zhang, Liang (EDT) /Lin, Liangzhen (EDT) /Chen, Guobang (EDT) /Publisher: Elsevier Science Ltd Published 2006/03, ISBN:0080445594 (Hard cover book).

9.   V.F.Mitin, E.F.Venger, N.S.Boltovets, M.Oszwaldowski and T.Berus. Low-temperatue Ge film resistance thermometers. Sensors and Actuators A, Vol. 68, No. 1-3, pp. 303-306 (1998).

10.  Download the article V.F. Mitin. Resistance thermometers based on the germanium films. Semiconductor Physics, Quantum Electronics & Optoelectronics, Vol. 2, No. 1, pp.115-123 (1999).

11.   V.F.Mitin, Yu.A.Tkhorik and E.F.Venger. All-purpose technology of physical sensors on the base of Ge/GaAs heterostructures. Microelectronics Journal, Vol.28, pp.617-625 (1997).


Some examples of application of Ge-on-GaAs film resistance thermometers:

1. Xie, Z., Huang, Y., Novotný, F. et al. Spherical Thermal Counterflow of He II. J Low Temp Phys (2022). https://doi.org/10.1007/s10909-022-02681-4.

2. P. Urban, T. Králík, M. Macek, P. Hanzelka, T. Věžník and L. Skrbek. Effect of boundary conditions in turbulent thermal convection. EPL, 134, 34003 (2021). doi: 10.1209/0295-5075/ac0c89.

3. Vera Musilov, Toḿas Kŕaĺık, Marco La Mantia, Michal Macek, Pavel Urban and Ladislav Skrbek. Reynolds number scaling in cryogenic turbulent Rayleigh–Bénard convection in a cylindrical aspect ratio one cell. Journal of Fluid Mechanics, 832, 721-744 (2017).

4. Yu.A. Dmitriev, V.D. Melnikov, K.G. Styrov, M.A. Tumanova. EPR study of methyl radical in van-der-Waals solids. Physica B: Condensed Matter, 440, pp. 104–112 (2014). 

5. Yu.A. Dmitriev, V.D. Melnikov, K.G. Styrov, M.A. Tumanova. Complex rotational motion of CH3 in solid CO as found by EPR. Physica B: Condensed Matter, 449, pp. 25–30 (2014). 

6. Pavel Urban, Pavel Hanzelka, Vera Musilová, Tomáš Králík, Marco La Mantia, Aleš Srnkaand Ladislav Skrbek. Heat transfer in cryogenic helium gas by turbulent Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1. New Journal of Physics 16, 053042 (2014).

7. Benetis, N. P., & Dmitriev, Y. A. Anomalous EPR Intensity Distribution of the Methyl Radical Quartet Adsorbed on the Surface of Porous Materials. Comparison with Solid Gas Matrix Isolation. Journal of Physical Chemistry A, 117 (20), 4233–4250 (2013).

8. Pavel Urban, David Schmoranzer, Pavel Hanzelka, Katepalli R. Sreenivasan, and Ladislav Skrbek. Anomalous heat transport and condensation in convection of cryogenic helium. Proceedings of the National Academy of Sciences of the United States of America, 14 May 2013, vol. 110, no. 20, pp. 8036-8039 (2013).

 9. P. Urban, P. Hanzelka, T. Kralik, V. Musilova, A. Srnka and L. Skrbek. Effect of Boundary Layers Asymmetry on Heat Transfer Efficiency in Turbulent Rayleigh-Bénard Convection at Very High Rayleigh Numbers. Phys. Rev. Lett. 109, 154301 (2012).  

10.   Yurij A. Dmitriev and Nikolas Ploutarch Benetis. EPR Line-shape Anisotropy and Hyperfine Shift of Methyl Radicals in Solid Ne, Ar, Kr, and p-H2 Gas Matrices. Journal of Physical Chemistry A, 114 (39), 10732–10741 (2010).

11.   P-E. Roche, F. Gauthier, R. Kaiser and J. Salort. On the triggering of the Ultimate Regime of convectionNew Journal of Physics, 12, 085014 (2010).

12.   F. Gauthier, J. Salort, O. Bourgeois, J.-L. Garden, R. du Puits, A. Thess and P.-E. Roche. Transition on local temperature fluctuations in highly turbulent convection. Europhysics Letter, 87, 44006 (2009).

13.   K.J. Thompson, S-c. Liu, G. Labbe, and G.G. Ihas. Use of calorimetry to study the energy decay of quantum turbulence. Journal of Physics: Conference Series 150, 032111 (2009)

14.   M. Dalban-Canassy, S.W. Van Sciver. Steady counterflow He II heat transfer through porous media. Advances in Cryogenic Engineering 55, pp.1327-1334 (2009). AIP Conference Proceedings 1218, CEC/ICMC 2009, 28 Jun — 2 Jul 2009, Tucson, Arizona, USA.

15.   T.V. Chagovets, L. Skrbek. On flow of He II in Channels with ends blocked by superleaks. Journal of Low Temperature Physics 153, 162-188 (2008).

16.   G.G. Ihas, G. Labbe, K.J. Thompson. Preliminary measurements on grid turbulence in liquid 4He. Journal of Low Temperature Physics 150, 384-393 (2008).

17.   Yihui Zhou, Vadim F. Mitin, Greg Labbe, Shu-chen Liu, Ridvan Adjimambetov, and Gary G. Ihas, Sub-millimeter Size Sensors for Measurements in Cryogenic Turbulence. Proc. of 24th International Conference on Low Temperature Physics,  Orlando, Florida, USA, August 10-17, 2005, AIP Conference Proceedings 850, pp.1631-1632 (2006).

18.   P.C. McDonald, E. Jaramillo, B. Baudouy. Thermal design of the CFRP support struts for the spatial framework of the Herschel Space Observatory. Cryogenics, 46, 298–304 (2006).

19.   G.G. Ihas, V.F. Mitin, and N.S. Sullivan. Cryogenic mass gauging in a free-falling storage tank. Journal of Low Temperature Physics, Vol. 134 (1-2) pp. 437-442 (2004).